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If x is a function of a real variable t and f is a function of both x and t, then the equation

ẋ(t) = f(x(t), t) (8.1.1)

is called a first order differential equation. Solving such an equation involves more than
algebraic manipulation; indeed, although the equation itself involves three quantities, x,
ẋ, and t, to find a solution we must identify a function x, defined solely in terms of
the independent variable t, which satisfies the relationship of (8.1.1) for all t in some
open interval. For many equations, exact solution is not possible and we have to rely on
approximations. In this chapter we will discuss techniques for finding both approximate
and, where possible, exact solutions to differential equations.

We have already seen many examples of differential equations: in Section 4.8 when
we discussed finding the position of an object moving in a straight line given its velocity
function and its initial position, in Section 6.3 when we discussed models for growth and
decay, in Section 7.3 when we discussed the motion of a projectile, and in Section 7.4
when we considered the two-body problem. Indeed, in many ways the study of differential
equations is at the heart of calculus. To study the interaction of physical bodies in the
world is to study the ramifications of physical laws such as the law of gravitation and
Newton’s second law of motion, laws which frequently lead, as we saw in Section 7.4, to
questions involving the solution of differential equations. Newton was the first to realize
the power of calculus for solving a vast array of physical problems. The mathematicians
that followed him enlarged and refined his techniques until they began to believe that the
entire future of the universe, as well as its past, could be discerned from a knowledge of
the current positions and velocities of all physical bodies and the forces at work between
them. In such a world view, nothing is undetermined in itself; what appears to us as
undetermined is simply a reflection of our ignorance of the forces involved. As an example
of this view, writing in 1795, Pierre Simon Laplace (1749-1827) said:

Given for one instant an intelligence which could comprehend all the forces by which
nature is animated and the respective situation of the beings who compose it — an
intelligence sufficiently vast to submit these data to analysis — it would embrace in
the same formula the movements of the greater bodies of the universe and those of the
lightest atom; for it, nothing would be uncertain and the future, as the past, would be
present to its eyes. *

* P. S. Laplace, Essai philosphique sur les probabilités (Paris, 1814), translated by F. W.
Truscott and F. L. Emory, A Philosophical Essay on Probabilities (New York, 1951), page
3.

1 Copyright c© by Dan Sloughter 2000
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Today we know more about the limits to our knowledge, but, nevertheless, the study of
differential equations remains a key component to our understanding of the universe.

To begin our study, consider the equation

ẋ(t) = f(x(t), t) (8.1.2)

with the initial condition x(t0) = x0. To simplify notation, we will frequently omit the
independent variable when referring to x(t) and write simply

ẋ = f(x, t). (8.1.3)

Now if f(x, t) depends only on the value of t, that is, if f(x, t) = g(t) for all values of
x, where g is a function of t alone, then we may solve (8.1.3) by integration. That is,
integrating both sides (8.1.3) gives us∫ t

t0

ẋ(s)ds =
∫ t

t0

g(s)ds. (8.1.4)

Substituting ∫ t

t0

ẋ(s)ds = x(t)− x(t0),

into (8.1.4), we have

x(t) = x(t0) +
∫ t

t0

g(s)ds. (8.1.5)

Assuming we can compute the definite integral, which, provided g is continuous, can at
least always be done numerically, we have solved the differential equation. This is the type
of differential equation we considered in Section 4.8.

Example Consider the equation

ẋ = 4 sin(3t)

with initial condition x(0) = 5. Then

x(t) = 5 +
∫ t

0

4 sin(3s)ds

= 5− 4
3

cos(3s)
∣∣∣t
0

= 5− 4
3

cos(3t) +
4
3

=
1
3
(19− 4 cos(3t)).

More generally, suppose f in (8.1.3) depends on both x and t. In that case, since
the right-hand side of the equation involves the unknown function x, we cannot simply
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integrate both sides of the equation. We have solved some equations like this in earlier
sections, such as the inhibited population growth model

ẋ =
α

M
x(M − x)

in Section 6.3, and we will discuss general techniques for finding exact solutions for several
types of equations in the coming sections. However, in this section we will concentrate
on direct numerical techniques for approximating solutions. Indeed, knowing the difficulty
of evaluating ordinary definite integrals, it is not hard to believe that many, if not most,
differential equations may be solved only through numerical approximation.

Although the function x in equation (8.1.3) is unknown, we do have enough information
to find its best affine approximation at t0. Namely, the best affine approximation to x at
t0 is

T (t) = x0 + ẋ(t0)(t− t0) = x0 + f(x0, t0)(t− t0). (8.1.6)

Hence, from our work with Taylor’s theorem in Section 5.2 and assuming f(x(t), t) is a
continuous function, we have

x(t) = x0 + f(x0, t0)(t− t0) + O((t− t0)2). (8.1.7)

Equivalently,
x(t0 + h) = x0 + hf(x0, t0) + O(h2). (8.1.8)

Thus for a small value of h,
x1 = x0 + hf(x0, t0)

will provide a good approximation to x(t0 + h). However, we want to do more than this;
since x is a function, we want to be able to approximate its values over an entire interval,
say [t0, t1]. To do so, we choose a small value for h and iterate the process that gave us
x1. Specifically, we let sk = t0 + kh, k = 0, 1, . . . , n, where n is chosen large enough that
sn ≥ t1, and compute

xk+1 = xk + hf(xk, sk) (8.1.9)

for k = 0, 1, . . . , n − 1. That is, we compute an approximation for x(sk+1) by apply-
ing the best affine approximation to our approximation for x(sk), repeating the process
enough times until we have approximated x over the entire interval [t0, t1]. This method
of approximation is known as Euler’s method.

Euler’s method To approximate a solution to the equation

ẋ = f(x, t)

with initial condition x(t0) = x0 on an interval [t0, t1], choose a small value for h > 0
and an integer n such that t0 + nh ≥ t1. Letting sk = t0 + kh, k = 0, 1, . . . , n, compute
x1, x2, . . . , xn using the difference equation

xk+1 = xk + hf(xk, sk). (8.1.10)

Then xk is an approximation for x(t + kh).
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Note that (8.1.10) makes use of a difference equation, a discrete time equation that we
first met in Section 1.4, in order to approximate the solution of a differential equation.

Example Consider the differential equation ẋ = 0.04x with initial condition x(0) = 50.
From our work in Chapter 6 we know that the solution to this equation is

x(t) = 50e0.04t.

In particular, x(50) = 50e2 = 369.45, rounding our answer to the second decimal place.
To approximate x on the interval [0, 50] using Euler’s method, we will first take h = 1 and,
starting with x0 = 50, compute x1, x2, . . . , x50, where in this case xk will approximate
x(k). Using (8.1.10) with f(x, t) = 0.04x and rounding to two decimal places, we have

x1 = x0 + h(0.04x0) = 50 + (1)(0.04)(50) = 50 + 2 + 52.00,

x2 = x1 + h(0.04x1) = 52 + (1)(0.04)(52) = 52 + 2.08 = 54.08,

x3 = x2 + h(0.04x2) = 54.08 + (1)(0.04)(54.08) = 54.08 + 2.16 = 56.24,

and so on, ending with x50 = 355.33. The following table gives the values of xt and x(t)
for t = 0, 5, 10, . . . , 50:

t xt x(t)
0 50.00 50.00
5 60.83 61.07

10 74.01 74.59
15 90.05 91.11
20 109.56 111.28
25 133.29 135.91
30 162.17 166.01
35 197.30 202.76
40 240.05 247.65
45 292.06 302.48
50 355.33 369.45

Notice that the error in our approximation, that is, the difference between xk and x(k),
increases as k increases. For example,

x(5)− x5 = 0.24,

whereas
x(50)− x50 = 14.12.

This should be expected since the error of the approximation on each step is compounded
by the errors made in each of the preceding steps. The only way we can control the amount
of error in our approximations is to decrease the step size. For example, if we reduce the
step size to h = 0.1, we obtain

x1 = x0 + h(0.04x0) = 50 + (0.1)(0.04)(50) = 50 + 0.2 = 50.2000,

x2 = x1 + h(0.04x1) = 50.2 + (0.1)(0.04)(50.2) = 50.2 + 0.2008 = 50.4008,

x3 = x2 + h(0.04x2) = 50.4008 + (0.1)(0.04)(50.4008) = 50.4008 + 0.2016 = 50.6024,
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Figure 8.1.1 Approximate solutions of ẋ = 0.04x

and so on, ending with x500 = 367.98 as our approximation for x(50). In general, with
h = 0.1, xk is an approximation for x(0+kh) = x(0.1k). Equivalently, x(t) is approximated
by xk where k = 10t, provided 10t is an integer. The following table gives the values of
x10t and x(t) for t = 0, 5, 10, . . . , 50:

t x10t x(t)
0 50.00 50.00
5 61.05 61.07

10 74.53 74.59
15 91.00 91.11
20 111.10 111.28
25 135.64 135.91
30 165.61 166.01
35 202.19 202.76
40 246.86 247.65
45 301.40 302.48
50 367.98 369.45

As expected, reducing the step size from h = 1 to h = 0.1 greatly reduces the error
in the approximations. Figure 8.1.1 shows the graphs of both our approximations to x
(the graph of x is not shown since, on this scale, it is essentially the same as our second
approximation).

Example The differential equation in the previous example could be used to model a
population which is growing at a rate of approximately 4% per unit of time, starting with
an initial population of 50. As a modification of this model, consider a case where the rate
of growth of the population is decreasing over time. For example, the rate of growth might
start out at 4% but decrease over time toward 2%. If x(t) is the population after t units
of time, then the differential equation

ẋ = 0.02(1 + e−
t
10 )x
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Figure 8.1.2 An approximate solution of ẋ = 0.02(1 + e−
t
10 )x

would describe one such situation. To approximate the solution to this equation over
the interval [0, 100], again assuming an initial population of x0 = 50, we will use Euler’s
method with h = 0.05 and compute x1, x2, . . . , x2000. Then, with

f(x, t) = 0.02(1 + e−
t
10 )x,

we have
x1 = x0 + hf(50, 0) = 50 + (0.05)(2) = 50 + 0.1 = 50.10000,

x2 = x1 + hf(50.1, 0.05) = 50.1 + (0.05)(1.99900) = 50.1 + 0.09995 = 50.19995,

x3 = x2 + hf(50.19995, 0.10) = 50.19995 + (0.05)(1.99801)
= 50.19995 + 0.09990 = 50.29985,

and so on, ending with x2000 = 450.91 as our approximation to x(20), where we have
rounded x1, x2, and x3 to five decimal places and x2000 to two decimal places. In general,
xk is an approximation for x(0 + 0.05k) = x(0.05k); that is, x(t) is approximated by
x20t. The following table lists the values of x20t, rounded to two decimal places, for
t = 0, 10, 20, . . . , 100:

t x20t (≈ x(t))
0 50.00

10 69.30
20 88.67
30 110.17
40 135.40
50 165.74
60 202.59
70 247.50
80 302.30
90 369.20

100 450.91

The graph of our approximate solution is shown in Figure 8.1.2.
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As we have seen, the accuracy of Euler’s method depends on the step size h. In theory,
we can obtain any level of accuracy we desire by choosing h small enough; however, in
practice there are limitations on how small we can make h. These limitations include
the level of precision with which a given computer represents numbers, the time it takes
to perform the necessary computations (smaller values of h require more iterations of
(8.1.10)), and the accumulation of round-off error resulting from requiring large numbers
of iterations. Fortunately, there are many ways to improve upon Euler’s method, one of
which we will consider now.

For the equation
ẋ = f(x, t)

with x(t0) = x0, Euler’s method is based on using hf(x0, t0) as an approximation to the
difference x(t0 + h)− x0. The accuracy of this approximation will depend upon how much
ẋ(t) differs from f(x0, t0) over the interval [t0, t0 + h]. In general, the accuracy of our
approximation will improve if we use

ẋ
(
t0 +

h

2

)
,

the slope of x at the midpoint of the interval [t0, t0 + h], in place of ẋ(t0) = f(x0, t0), the
slope of x at the left-hand endpoint of this interval. Now

ẋ
(
t0 +

h

2

)
= f

(
x
(
t0 +

h

2

)
, t0 +

h

2

)
. (8.1.11)

However, we do not know x
(
t0 + h

2

)
. To get around this difficulty, we will first use Euler’s

method to approximate x
(
t0 + h

2

)
by

x0 +
h

2
f(x0, t0),

and then approximate ẋ
(
t0 + h

2

)
by

f
(
x0 +

h

2
f(x0, t0), t0 +

h

2

)
. (8.1.12)

Replacing f(x0, t0) by (8.1.12) in Euler’s method, we have

x1 = x0 + hf
(
x0 +

h

2
f(x0, t0), t0 +

h

2

)
(8.1.13)

as our approximation for x(t0 + h). It can be shown that in this case

x(t0 + h)− x1 = O(h3),

whereas we have seen that the error in one step of Euler’s method is O(h2). This method of
approximation is known as the Runge-Kutta method of order 2, after the mathematicians
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Carl Runge (1856-1927) and M. W. Kutta (1867-1944). In general, an approximation
method is said to be of order n if the error in one step is O(hn+1). There are Runge-Kutta
formulas for approximations of higher order, but we will consider only this order 2 formula.

Second order Runge-Kutta To approximate the solution of the equation

ẋ = f(x, t)

with initial condition x(t0) = x0 on an interval [t0, t1], choose a small value for h > 0 and
an integer n such that t0 + nh ≥ t1. Letting sk = t0 + kh, k = 0, 1, 2, . . . n, compute

m =
h

2
f(xk, sk)

and
xk+1 = xk + hf

(
xk + m, sk +

h

2

)
(8.1.14)

for k = 0, 1, . . . n− 1. Then xk is an approximation for x(t0 + kh).

Example We will approximate the solution of ẋ = 0.04x with x(0) = 50 on the interval
[0, 50] using the second order Runge-Kutta method with h = 0.1. Using f(x, t) = 0.04x
and rounding to four decimal places, we have

x1 = 50 + 0.1f(50 + 0.05f(50, 0), 0.05)
= 50 + 0.1f(50.1, 0.05)
= 50 + 0.2004
= 50.2004,

x2 = 50.2004 + 0.1f(50.2004 + 0.05f(50.2004, 0.1), 0.15)
= 50.2004 + 0.1f(50.3008, 0.15)
= 50.2004 + 0.2012
= 50.4016,

and so on, up to x500 = 369.4508. Since h = 0.1, x10t gives us an approximation for
x(t) whenever 10t is an integer. The following table gives the values of x10t and x(t) for
t = 0, 5, 10, . . ., 50:

t x10t x(t)
0 50.0000 50.0000
5 61.0701 61.0701

10 74.5912 74.5912
15 91.1058 91.1059
20 111.2768 111.2770
25 135.9137 135.9141
30 166.0053 166.0058
35 202.7592 202.7600
40 247.6506 247.6516
45 302.4809 302.4824
50 369.4508 369.4528
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Comparing these values with the values we obtained with Euler’s method for the same
equation, we see that we have decreased our error significantly without decreasing the step
size. Hence we have gained accuracy without greatly increasing the number of computa-
tions required.

Example In Problem 7 in Section 4.8 (which is repeated in Problem 2 at the end of
this section) we discussed the problem of a body in free fall near the surface of the earth,
neglecting the effects of air resistance. In that case, if the body has mass m and F is
the force acting on the body, then, since we are neglecting all forces except for that of
gravity, F = −mg, where g = 32 feet/second2. However, if we consider the effects of
air resistance, then we have to modify F to account for this additional force acting in a
direction opposite to that of gravity. One common assumption is that air resistance is
proportional to velocity; in that case, we have

F = −32m− kv, (8.1.15)

where k > 0 is a constant which depends on the particular body and v is the velocity of the
body. Note that kv < 0 since v < 0, so the additional force −kv is acting in the opposite
direction of gravity. Now if a is the acceleration of the body, F = ma implies

ma = −32m− kv, (8.1.16)

and so

a = −32− k

m
v. (8.1.17)

Since a = v̇, (8.1.17) gives us the differential equation

v̇ = −32− cv, (8.1.18)

where

c =
k

m

is a constant which depends both on the mass of the body and its air resistance. For
example, suppose we have a situation where c = 0.1 and the body is released from rest
high above the ground. Then we are interested in the solution of the equation

v̇ = −32− 0.1v

with the initial condition v(0) = 0. The following table gives the results from applying the
second order Runge-Kutta method with step size h = 0.1 over the interval [0, 70]:
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t v10t (≈ v(t))
0 0.0
5 −125.9

10 −202.3
15 −248.6
20 −276.7
25 −293.7
30 −304.1
35 −310.3
40 −314.1
45 −316.4
50 −317.8
55 −318.7
60 −319.2
65 −319.5
70 −319.7

10 20 30 40 50 60 70

-300
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-50

Figure 8.1.3 Velocity of a body in free fall

From the table of values and from the graph of the approximate solution in Figure 8.1.3, it
appears that the velocity of the body approaches a limiting value. We shall see in the next
section that this is indeed the case. For this example, the velocity will approach −320 feet
per second. We call this velocity the terminal velocity of the body.

Problems

1. Solve each of the following differential equations using the given initial condition.

(a) ẋ = t2 − 2, x(0) = 3 (b) ẋ = − sin(t), x(0) = 2
(c) ẏ =

√
t, y(1) = −3 (d) ẇ = te−t, w(0) = 2

2. Let x(t), v(t), and a(t) be the height, velocity, and acceleration, respectively, of an
object of mass m in free fall near the surface of the earth. Let x0 and v0 be the
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height and velocity, respectively, of the object at time t0. If we ignore the effects
of air resistance, the force acting on the body is −mg, where g is a constant (g =
9.8 meters/second2 or g = 32 feet/second2). Thus by Newton’s second law of motion,

−mg = ma(t),

and so
a(t) = −g.

Show that
x(t) = −1

2
gt2 + v0t + x0.

3. Suppose an object is projected vertically upward from a height of 100 feet with an
initial velocity of 20 feet per second. Use Problem 2 to answer the following questions.

(a) Find x(t), the height of the object at time t.
(b) At what time does the object reach its maximum height?
(c) What is the maximum height reached by the object?
(d) At what time will the object strike the ground?

4. For each of the following, use Euler’s method to approximate the solution of the equa-
tion over the given interval I using the step size h specified. Plot your result.

(a) ẋ = e−2t2 , x(0) = 1, I = [0, 10], h = 0.1
(b) ẋ = −0.96x, x(0) = 100, I = [0, 100], h = 0.5
(c) ẏ = 0.05y − 5, y(0) = 200, I = [0, 50], h = 0.05
(d) ẋ = 0.002x(100− x), x(0) = 10, I = [0, 200], h = 0.1
(e) ẏ = 0.02(1 + 0.5e−

t
15 )y, y(0) = 10, I = [0, 150], h = 0.5

(f) ẋ = cos(x2), x(0) = 0, I = [0, 10], h = 0.01
(g) ẋ = 0.045x + 0.4t, x(0) = 30, I = [0, 40], h = 0.1
(h) ẋ = 0.1x + cos(t), x(0) = 0, I = [0, 10], h = 0.05

5. Use the second order Runge-Kutta method to approximate solutions to the equations
in Problem 4.

6. In 1990 the population of India was 853.4 million. If P (t) is the population of India t
years after 1990, suppose P satisfies the differential equation

Ṗ = k(t)P,

where k(t) is the rate of growth of the population at time t. For example, at the start
of 1990 the population of India was growing at a rate of 2.1% per year, so k(0) = 0.021.

(a) Suppose the rate of growth remains constant; that is, suppose k(t) = 0.021 for all
t ≥ 0. Find P (t). In what year will the population reach 1 billion? In what year
will it reach 2 billion? In what year will it reach 3 billion?
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(b) Now suppose k(t) is decreasing toward 1% in such a way that

k(t) = 0.01(1 + 1.1e−
t
30 ).

Use the second order Runge-Kutta method to approximate P over the interval
[0, 100] using a step size of h = 0.1. In what year will the population reach 1
billion? In what year will it reach 2 billion? In what year will it reach 3 billion?

(c) Plot your results from (a) and (b) together.

7. In the final example in this section we considered the problem of an object in free fall
when the air resistance is proportional to the velocity of the object. Now consider the
case where the air resistance is proportional to the square root of the speed.
(a) If s is the speed of the object, in feet per second, t seconds after it is released,

explain why s satisfies the differential equation

ṡ = 32− c
√

s,

s(0) = 0, for some constant c > 0.
(b) Using c = 1, use the second order Runge-Kutta method to solve the equation in

(a) over the interval [0, 500] using a step size of h = 0.5. Plot your results.
(c) Does the object appear to approach a limiting speed? If so, what is the terminal

speed?
(d) Solve the equation

32− c
√

s = 0

for s. Explain the connection between this answer and your answer in (c).

8. In the final example in this section we considered the problem of an object in free fall
when the air resistance is proportional to the velocity of the object. Now consider the
case where the air resistance is proportional to the square of the velocity.
(a) If v is the velocity of the object, in feet per second, t seconds after it is released,

explain why v satisfies the differential equation

v̇ = −32 + cv2,

v(0) = 0, for some constant c > 0.
(b) Using c = 0.01, use the second order Runge-Kutta method to approximate the

solution to the equation in (a) over the interval [0, 20] using a step size of h = 0.02.
Plot your results.

(c) Does the object appear to approach a limiting velocity? If so, what is the terminal
velocity?

(d) Solve the equation
−32 + cv2 = 0

for v. Explain the connection between this answer and your answer in (c).
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9. Suppose the population of a certain country was 56 million in 2000 and the natural rate
of the growth of the population was 2% per year. Moreover, suppose k(t) represents
the net rate of growth of the population due to immigration and emigration t years
after 2000.
(a) Let P (t) be the population of the country t years after 2000. Explain why P should

satisfy the differential equation

Ṗ = 0.02P + k(t),

with P (0) = 56.
(b) If k(t) = 0.04t, use the second order Runge-Kutta method to approximate the

solution to the equation in (a) over the interval [0, 25] using a step size of h = 0.05.
Plot your results.

(c) What does this model predict for the population of the country in the year 2010?
(d) When will the population of the country reach 100 million?


