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Polynomial Approximations

In Chapter 3 we discussed the problem of finding the affine function which best approx-
imates a given function about some point. In particular, we found that the best affine
approximation to a function f at a point c is given by

T (x) = f ′(c)(x− c) + f(c), (5.1.1)

provided that f is differentiable at c. In this section and the next, we will extend the
ideas of Sections 3.1 and 3.2 to the problem of finding polynomial approximations of any
given degree to a function about some specified point. We shall see that many nonlinear
functions can be approximated to any desired level of accuracy over a specified interval
if we use polynomials of sufficiently high degree. As an example, compare the graphs of
f(x) = sin(x) and

P (x) = x− 1
6
x3 +

1
120

x5 − 1
5040

x7 +
1

362, 880
x9

in Figure 5.1.1. They are almost indistinguishable over the interval [−π, π]. In practical
terms, this means there is little difference in working with P (x) instead of f(x) for x
in [−π, π]. Moreover, since polynomials are the simplest of functions, involving only the
arithmetic operations of addition, subtraction, and multiplication, the substitution of P
for f can be a very helpful step in simplifying a problem.
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Figure 5.1.1 Graphs of f(x) = sin(x) and an approximating polynomial
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To begin, we need to recall, and then generalize, some definitions and facts from
Sections 3.1 and 3.2. First, recall that a function f is said to be o(h) if

lim
h→0

f(h)
h

= 0; (5.1.2)

a function f is said to be O(h) if there exist constants M and ε such that∣∣∣∣f(h)
h

∣∣∣∣ ≤ M (5.1.3)

whenever −ε < h < ε. In particular, we saw that f is O(h) if

lim
h→0

f(h)
h

exists. The following definition generalizes to other powers of h this method of character-
izing the rate at which a function converges to 0.

Definition For any n > 0, a function f is said to be o(hn) if

lim
h→0

f(h)
hn

= 0. (5.1.4)

For any n > 0, a function f is said to be O(hn) if there exist constants M and ε such that∣∣∣∣f(h)
hn

∣∣∣∣ ≤ M (5.1.5)

whenever −ε < h < ε.

Similar to our result in Section 3.1, f is O(hn) if

lim
h→0

f(h)
hn

exists.
As before, we use this notation as a means of comparing the rates at which functions

approach 0. As h approaches 0, a function which is O(hn) approaches 0 as least as fast as
hn does. Note that for n > m > 0,

lim
h→0

hn

hm
= lim

h→0
hn−m = 0 (5.1.6)

since n−m > 0, and so hn goes to 0 faster than hm as h approaches 0. Thus if n > m > 0,
as h goes to 0, a function which is O(hn) approaches 0 faster than does a function which
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Figure 5.1.2 Graphs of f(h) = hn for n = 2, 4, 6, and 8

is O(hm) but not O(hn). Figure 5.1.2 illustrates this fact with the graphs of f(h) = hn for
n = 2, 4, 6 and 8.

Example Since

lim
h→0

sin(h)
h

= 1,

it follows that sin(h) is O(h).

Example Since

lim
h→0

sin2(h)
h

= lim
h→0

sin(h)
h

lim
h→0

sin(h) = (1)(0) = 0,

it follows that sin2(h) is o(h).

Example Since

lim
h→0

sin2(h)
h2

= lim
h→0

sin(h)
h

lim
h→0

sin(h)
h

= (1)(1) = 1,

it follows that sin2(h) is O(h2).

Example Since

lim
h→0

sin3(h)
h3

= lim
h→0

sin(h)
h

lim
h→0

sin(h)
h

lim
h→0

sin(h)
h

= (1)(1)(1) = 1,

it follows that sin3(h) is O(h3).

Hence, for example, we would say that as h goes to 0, sin2(h) approaches 0 faster than
h, but at about the same rate as h2.
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Now suppose that f is O(hn) for some n > 0. This means that as h goes to 0, f
approaches 0 at least as fast as hn does. It should follow that f goes to 0 faster than hm,
and so is o(hm), for any 0 < m < n. To see this, let M and ε > 0 be numbers such that∣∣∣∣f(h)

hn

∣∣∣∣ ≤ M (5.1.7)

for all h in the interval (−ε, ε). Then∣∣∣∣f(h)
hm

∣∣∣∣ = |hn−m|
∣∣∣∣f(h)

hn

∣∣∣∣ ≤ |h|n−mM (5.1.8)

for all h in (−ε, ε). Since
lim
h→0

|h|n−mM = 0, (5.1.9)

it follows that

lim
h→0

∣∣∣∣f(h)
hm

∣∣∣∣ = 0, (5.1.10)

and so

lim
h→0

f(h)
hm

= 0. (5.1.11)

Thus f is o(hm).

Proposition If n > m > 0 and f is O(hn), then f is o(hm).

Example We saw above that sin3(h) is O(h3), from which it now follows, for example,
that sin3(h) is o(h2).

Next, recall that if f is a function defined in an open interval about a point c and T
is an affine function such that T (c) = f(c) and

R(h) = f(c + h)− T (c + h) (5.1.12)

is o(h), then T is the best affine approximation to f at c. Moreover, as mentioned above,
we saw in Chapter 3 that a function f has a best affine approximation at a point c if and
only if f is differentiable at c and, in that case, the best affine approximation is given by

T (x) = f(c) + f ′(c)(x− c). (5.1.13)

Putting (5.1.12) and (5.1.13) together and letting x = c + h, or, equivalently, h = x − c,
we have that

f(x)− f(c)− f ′(c)(x− c)

is o(x− c). We may express this by writing

f(x)− f(c)− f ′(c)(x− c) = o(x− c), (5.1.14)
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or, solving for f(x), simply

f(x) = f(c) + f ′(c)(x− c) + o(x− c). (5.1.15)

In words, (5.1.15) says that f(x) is equal to f(c) + f ′(c)(x− c) plus some function which
is o(x− c), that is, some function which approaches 0 faster than x− c as x approaches c.

Example Let f(x) =
√

x. Then

f ′(1) =
1
2
,

so the best affine approximation to f at 1 is

T (x) = 1 +
1
2
(x− 1).

That is,
√

x = 1 +
1
2
(x− 1) + o(x− 1).

In words, this statement says that
√

x is equal to

1 +
1
2
(x− 1)

plus a term of order higher than x − 1, that is, plus a term which goes to 0 faster than
x− 1 as x approaches 1.

Example Let f(x) = sin(x). Then f ′(0) = cos(0) = 1, so the best affine approximation
to f at 0 is

T (x) = x.

Thus
sin(x) = x + o(x),

a fact which is often used in applications to justify replacing the function sin(x) by the
function x for calculations involving only values of x close to 0.

Now suppose that f is twice continuously differentiable on an interval (c− δ, c + δ) for
some δ > 0; that is, suppose both f ′ and f ′′ exist and are continuous on (c− δ, c + δ). If
T is the best affine approximation to f at c, then, as we have seen,

R(h) = f(c + h)− T (c + h) (5.1.16)

is o(h). We will show that R is in fact O(h2). Suppose 0 < ε < δ and −ε < h < ε. First,
note that

f(c + h)− T (c + h) = f(c + h)− f(c)− f ′(c)h. (5.1.17)

By the Mean Value Theorem, there is a point u between c and c + h such that

f(c + h)− f(c) = f ′(u)h. (5.1.18)
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Hence
f(c + h)− T (c + h) = f ′(u)h− f ′(c)h = h(f ′(u)− f ′(c)). (5.1.19)

Applying the Mean Value Theorem again, there exists a point v between c and u such that

f ′(u)− f ′(c) = f ′′(v)(u− c). (5.1.20)

Thus
R(h)
h2

=
f(c + h)− T (c + h)

h2
=

h(u− c)f ′′(v)
h2

=
(u− c)f ′′(v)

h
. (5.1.21)

If we let M be the maximum value of |f ′′(x)| on [c− ε, c + ε] and note that |u− c| < |h|,
then we see that ∣∣∣∣R(h)

h2

∣∣∣∣ =
|u− c||f ′′(v)|

|h|
<
|h|M
|h|

= M (5.1.22)

for all h with −ε < h < ε. Hence R(h) is O(h2).

Proposition If f is twice continuously differentiable on an open interval containing the
point c and T is the best affine approximation to f at c, then

R(h) = f(c + h)− T (c + h) (5.1.23)

is O(h2).

Letting x = c + h, we can rephrase the proposition to say that

r(x) = f(x)− T (x) (5.1.24)

is O((x− c)2). Similar to our notation above, we may write

f(x) = f(c) + f ′(c)(x− c) + O((x− c)2). (5.1.25)

For our previous examples, this means that

√
x = 1 +

1
2
(x− 1) + O((x− 1)2)

and
sin(x) = x + O(x2).

This is the type of formulation that we wish to generalize to higher order polynomial
approximations. We will introduce these polynomials, called Taylor polynomials, here,
but save the verification that they provide the sought-for approximations until the next
section.



Section 5.1 Polynomial Approximations 7

Taylor polynomials

The best affine approximation T to a function f at a point c may be described as the only
first degree polynomial satisfying both T (c) = f(c) and T ′(c) = f ′(c). This provides a clue
as to where to look for higher order polynomial approximations. Namely, given a function
f which is n times differentiable at a point c, we will look for a polynomial Pn of degree
at most n with the property that Pn(c) = f(c) and the first n derivatives of Pn at c agree
with the first n derivatives of f at c. Hence we want to find constants b0, b1, b2, . . . , bn so
that the polynomial

Pn(x) = b0 + b1(x− c) + b2(x− c)2 + · · ·+ bn(x− c)n (5.1.26)

satisfies
P (j)

n (c) = f (j)(c) (5.1.27)

for j = 0, 1, 2, . . . , n, where P
(0)
n = Pn and, for j > 0, P

(j)
n is the jth derivative of Pn. Now

Pn(c) = b0

P ′
n(c) = b1

P ′′
n (c) = 2b2

P ′′′
n (c) = (3)(2)b3

P (4)
n (c) = (4)(3)(2)b4

...

P (n)
n (c) = n!bn.

Thus, to satisfy (5.1.27), we must have

f(c) = b0

f ′(c) = b1

f ′′(c) = 2b2

f ′′′(c) = 3!b3

f (4)(c) = 4!b4

...

f (n)(c) = n!bn.

Solving for b0, b1, b2, . . . , bn, we have

b0 = f(c)
b1 = f ′(c)

b2 =
f ′′(c)

2
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b3 =
f ′′′(c)

3!

b4 =
f (4)(c)

4!
...

bn =
f (n)(c)

n!
.

That is,

bj =
f (j)(c)

j!
(5.1.28)

for j = 0, 1, 2, . . . , n. The resulting polynomial is named after Brook Taylor (1685-1731),
an English mathematician who was the first to publish work on the related infinite series
that we will consider later in this chapter.

Definition Suppose f is n times differentiable at a point c. Then the polynomial

Pn(x) = f(c) + f ′(c)(x− c) +
f ′′(c)

2
(x− c)2 +

f ′′′(c)
3!

(x− c)3 + · · ·+ f (n)(c)
n!

(x− c)n

is called the Taylor polynomial of order n for f at c.

Example Consider f(x) = sin(x) and c = 0. Then

f ′(x) = cos(x)
f ′′(x) = − sin(x)
f ′′′(x) = − cos(x)
f ′′′′(x) = sin(x).

Notice that, if we were to continue finding higher derivatives, this cycle would repeat itself.
Evaluating the function and its derivatives at 0, we obtain

f(0) = 0
f ′(0) = 1
f ′′(0) = 0
f ′′′(0) = −1
f ′′′′(0) = 0,

a cycle which would repeat itself if we were to continue evaluating higher-order derivatives.
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Figure 5.1.3 Graphs of f(x) = sin(x) with Taylor polynomials P1 (left) and P3 (right)

Thus we obtain the following Taylor polynomials for sin(x) at x = 0:

P1(x) = x

P2(x) = x

P3(x) = x− x3

3!

P4(x) = x− x3

3!

P5(x) = x− x3

3!
+

x5

5!

P6(x) = x− x3

3!
+

x5

5!

P7(x) = x− x3

3!
+

x5

5!
− x7

7!

P8(x) = x− x3

3!
+

x5

5!
− x7

7!

P9(x) = x− x3

3!
+

x5

5!
− x7

7!
+

x9

9!
.

The graphs of P1, P3, P5, and P7, along with the graph of f , are shown in Figures
5.1.3 and 5.1.4. We have already seen the graph of P9 in Figure 5.1.1. Notice how the
Taylor polynomials give increasingly better approximations to sin(x) as the order increases.
Finally, since the values of the derivatives repeat the pattern 0, 1, 0, endlessly, in this case
we can write down a simple general expression for the Taylor polynomial of any order.
Namely, for any integer n ≥ 0,

P2n+1(x) = x− x3

3!
+

x5

5!
− x7

7!
+ · · ·+ (−1)n x2n+1

(2n + 1)!

and P2n+2(x) = P2n+1(x), the latter following from the fact that all the even-order deriva-
tives are 0.



10 Polynomial Approximations Section 5.1

-7.5 -5 -2.5 2.5 5 7.5

-3

-2

-1

1

2

3

-7.5 -5 -2.5 2.5 5 7.5

-3

-2

-1

1

2

3

Figure 5.1.4 Graphs of f(x) = sin(x) with Taylor polynomials P5 (left) and P7 (right)

Example Now we will find the Taylor polynomial of order 4 for g(x) =
√

x at x = 1.
First we find that

g′(x) =
1
2
x−

1
2

g′′(x) = −1
4
x−

3
2

g′′′(x) =
3
8
x−

5
2

g′′′′(x) = −15
16

x−
7
2 .

Hence
g(1) = 1

g′(1) =
1
2

g′′(1) = −1
4

g′′′(1) =
3
8

g′′′′(1) = −15
16

.

Thus we have

P4(x) = 1 +
1
2
(x− 1)−

1
4

2
(x− 1)2 +

3
8

3!
(x− 1)3 −

15
16

4!
(x− 1)4

= 1 +
1
2
(x− 1)− 1

8
(x− 1)2 +

1
16

(x− 1)3 − 5
128

(x− 1)4.

The graphs of P4 and g are shown in Figure 5.1.5. As we hoped, P4(x) provides a good
approximation to

√
x for values of x close to 1. For example, to 8 decimal places,

P4(1.1) = 1.04880859,

while √
1.1 = 1.04880884.
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Figure 5.1.5 Graphs of g(x) =
√

x with Taylor polynomial of order 4

As we should expect, the approximation worsens for x farther away from 1. For example,
to 3 decimal places,

P4(2) = 1.398,

while √
2 = 1.414.

Although finding a Taylor polynomial of order n for a given function f involves only
evaluating the derivatives of f at a specified point, nevertheless, the required computations
may become unwieldy, especially if f is itself complicated or n is large. In such cases, a
computer algebra system may prove useful. For example, you may find a computer algebra
system helpful in working Problems 10 through 12.

In the next section we will see that the Taylor polynomials provide polynomial approx-
imations that generalize best affine approximations. That is, we shall show that, under
suitable conditions, if Pn is the Taylor polynomial of order n for f at c, then the remainder
function

R(h) = f(c + h)− Pn(c + h) (5.1.29)

is O(hn+1), in agreement with our previous result that the remainder function for the best
affine approximation, P1, is O(h2).

Problems

1. Show that f(x) = tan2(x) is o(h).

2. Show that g(x) = tan2(x) is O(h2).

3. Show that f(z) = z2 sin(z) is o(h2) and O(h3).

4. Show that h(t) = 1− cos(t) is O(h2).

5. Show that f(x) = sin2(3x) is O(h2).
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6. Show that f(x) = x
4
3 is o(h), but not O(h2).

7. For each of the following functions, find the Taylor polynomial of order 4 at the given
point c.

(a) f(x) = sin(2x) at c = 0 (b) g(x) = cos(x) at c = 0
(c) f(z) =

√
z at c = 4 (d) f(θ) = tan(θ) at θ = 0

(e) h(x) = sin(x) at c = π (f) g(t) = cos(2t) at c = π

(g) f(x) =
1
x

at c = 1 (h) f(x) = 3x2 + 2x− 9 at c = 0

(i) g(x) =
1

1 + x2
at c = 0 (j) h(x) = x4 + 5x3 + 4x2 − 9x− 20 at c = 0

(k) g(t) =
1
t2

at c = 1 (l) h(z) = 8z5 − 3z3 + 6z at c = 0

(m) x(t) = sec(t) at c = 0 (n) f(x) = 3x4 − 4x3 + x2 − 3x− 2 at c = 1

8. Let P9 be the 9th order Taylor polynomial for f(x) = cos(x) at 0. Graph f and P9 on
the same axes. On what interval does P9(x) appear to give a good approximation to
cos(x)?

9. Let P13 be the 13th order Taylor polynomial for f(x) = sin(x) at 0. Graph f and P13

on the same axes. On what interval does P13(x) appear to give a good approximation
to sin(x)?

10. Let Pn be the nth order Taylor polynomial for f(x) =
1

x2 + 1
at 0.

(a) Graph f and P6 on the same axes. On what interval does P6(x) appear to give a
good approximation to f(x)?

(b) Repeat part (a) for P10 and P20.
(c) Do any of the polynomials in parts (a) and (b) appear to give a good approximation

to f on the interval [1, 2]?

11. Let P6 be the 6th order Taylor polynomial for x(t) = tan(t) at 0. Graph x and P6 on
the same axes and comment.

12. Let P15 be the 15th order Taylor polynomial for g(x) =
√

x at 1. Graph g and P15 on
the same axes. On what interval does P15(x) appear to give a good approximation to√

x?


