Section 2.2

Trigonometric Functions

Many processes in nature are cyclic. A pendulum oscillates back and forth, repeating its
motion over and over; a weight hanging at the end of a spring bobs up and down; the Earth
repeats its orbit about the Sun every 365 days; a population of arctic wolves has periods
of growth followed by periods of decrease, following the fluctuations in the population of
their prey; the monthly rainfall at an agricultural research station varies cyclically over
the years and over the decades. To model such natural behavior, a mathematician needs
functions which repeat their values over intervals of fixed length. These functions are the
periodic functions. Precisely, a function f is periodic if there is a fixed constant 7" such
that f(t+T) = f(t) for every value of ¢ in the domain of f. The smallest such positive T
for which this property holds is called the period of f.
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Figure 2.2.1 A right triangle

The class of periodic functions that we will consider in this section are the trigonometric
functions. Although these functions were originally invented to work with problems of
measurement, their importance in modern mathematics stems more from their periodic
behavior. We will begin with a definition in terms of measuring the sides of a right
triangle. Consider a right triangle with legs of lengths a and b and hypotenuse of length c.
Moreover, suppose, as in Figure 2.2.1, the angle opposite the leg of length b has measure
0. Then we define the sine of #, which we write as sin(6), by

b

sin(f) = - (2.2.1)

and the cosine of 0, which we write as cos(f), by

cos(f) = %. (2.2.2)

1 Copyright (c) by Dan Sloughter 2000
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Figure 2.2.2 A right triangle with a vertex on the unit circle

The properties of similar triangles, known even by the ancient Egyptians and Babylonians,
show that these ratios depend only on the value of 8, not on the size of the particular right
triangle being measured. Hence if we know the value of # and the length of just one side
of the triangle, and we have access to a table of values for the sine and cosine functions,
then it is possible to compute the lengths of the other two sides of the triangle. The
ancient Greek mathematicians exploited these facts in order to compute distances which
are inaccessible to direct measurement, such as the distance from the earth to the moon
and from the earth to the sun.

Since the values of the sine and cosine functions do not depend on the size of any
particular right triangle, for the purpose of definitions we may restrict our attention to
right triangles with hypotenuses of length one. In particular, if we have a right triangle
with legs of lengths a and b and hypotenuse of length 1 (so that a® + b = 1), then we may
draw it in the Cartesian plane with one leg running from (0, 0) to (a,0) and the other from
(a,0) to (a,b). If 6 is the measure of the angle opposite the side of length b, then we have

sin(6) = b (2.2.3)

and
cos(f) = a. (2.2.4)

In that case, the vertex (a, b) lies on the unit circle 22 +y? = 1. In particular, (cos(f), sin(6)
is a point on the unit circle centered at the origin. This also gives us a method for measuring
angles. We will say that the measure of the angle opposite the side of length b is 6 radians
if the length of the arc of the unit circle from (a,0) to (a,b) is 6. See Figure 2.2.2.

So far our definitions of sine and cosine include only angles that are between 0 and 5
radians. However, the considerations of the previous paragraph show us how to generalize
our definitions. Let ¢ be any real number and let C' be the unit circle centered at (0,0).
If t > 0, let (a,b) be the point reached by traversing C' a distance of ¢ units in the
counterclockwise direction starting from (1,0). If t < 0, let (a,b) be the point reached by
traversing C' a distance of [t| units in the clockwise direction starting from (1,0). Note
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that if £ > 27 or t < —27, then we will have to travel around C' one or more times. We
now define the sine and cosine of ¢ by

sin(t) = b (2.2.5)
and
cos(t) = a. (2.2.6)

In this way we have sine and cosine defined as functions on the entire real line. That is,
both sine and cosine now have domain (—o0, c0).

Our final definitions of the sine and cosine functions have several immediate conse-
quences. Most importantly, since the circumference of the unit circle is 27, both functions
are periodic with period 27. Hence

sin(t 4 2m) = sin(t) (2.2.7)

and
cos(t + 2m) = cos(t) (2.2.8)

for any value of t. Also, since (cos(t),sin(¢)) is a point on the unit circle, we have
sin?(t) + cos?(t) = 1 (2.2.9)
for all values of t. Recall that, in this notation,
sin?(t) = (sin(t))?
and
cos?(t) = (cos(t))>.

We will consider other interesting and useful identities involving sine and cosine in the
problems at the end of this section and later on as the need for them arises.

Although numerical approximations of sin(¢) and cos(t) are easily available from a
calculator for any value of ¢, it is useful to know some exact numerical values for these
functions. First of all, directly from the definition we have

sin(0) = 0 sin (g) =1  sin(r)=0 sin <3§> =1 sin(21)=0
and
3
cos(0) =1 cos <g> =0 cos(m) =—1  cos (;) =0 cos(2m) = 1.

Second, with a little more work, it can be shown that

. (T T e V3
SIn (g) = ! sin <Z> = % sin <—> = 3

and

T \/_ T T
()= (D)= we(3)=b
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Figure 2.2.3 Finding sin (%’T) and cos (%”)

Moreover, combining these values with basic knowledge of the geometry of the unit

circle, it is possible to find exact numerical values for the values of sin(t) and cos(t) for
s_2r 3 5n Tr bm Ar bm 7w g lr
T 30 47 67 6 47 37 30 4 6 -

Example Let (a,b) be the point on the unit circle corresponding to the angle ‘%T. Since
(a,b) is a distance § along the unit circle before (—1,0), the point (—a,b) is a distance §

along the unit circle after (1,0). Hence

™ V3
—a = cos <—) = 73

6
and
b = sin (f) = 1
6 2
Thus
5 \/§
cos| — | =a=——
6 2
and

) 51 1
sin (F) =)= 5

This is all best seen using a picture such as Figure 2.2.3. Note that the triangle with vertices
at (0,0), (a,b), and (a,0) is congruent to the triangle with vertices at (0,0), (—a,b), and
(—a,0).

Of course, because both sine and cosine have period 27, it is also easy to find exact
values for sin(t) and cos(t) if ¢ differs from one of the above values by a multiple of 2.
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Figure 2.2.4 Graphs of y = sin(¢) and y = cos(t)

Graphs of sine and cosine

The graphs of y = sin(¢) and y = cos(t) are shown in Figures 2.2.4. Since both functions
have period 27, the graphs will continue this behavior as ¢ goes to —oco or co, completing
one oscillation over every interval of length 27.

The only difference between the graph of y = asin(t), where a > 0, and the graph of
y = sin(t) is that the former oscillates between —a and a instead of between —1 to 1. In
general, for any constant a # 0, the graph of y = asin(¢) oscillates between —|a| and |al.
We call |a| the amplitude of the function y = asin(t). Of course, if a < 0, then the graph
of y = asin(t) is the graph of y = |a|sin(t) reflected about the t-axis.

Example The graph of y = 2sin(t) is shown in Figure 2.2.5.

3.

-3t

Figure 2.2.5 Graph of y = 2sin(t)

Now consider the graph of the function y = sin(bt). Since the sine function has period
27, this function goes through one complete oscillation as ¢ goes from 0 to %. That is,

y = sin(bt) has period 2T. Hence, if b > 0 the only difference between the graphs of

|bf
y = sin(t) and y = sin(bt) is the length of the period of oscillation. If b < 0, we may use
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Figure 2.2.6 Graph of y = sin(2t)

the fact that

sin(bt) = sin(—|b|t) = —sin(|b]t),
which follows from Problem 10.
Example The graph of y = sin(2¢) is shown in Figure 2.2.6.

Finally, consider the graph of y = sin(t — ¢). As mentioned in Section 2.1, the effect of
the ¢ is to shift the graph y = sin(¢) horizontally by |c| units, to the right if ¢ > 0 and to
the left if ¢ < 0. We call ¢ the phase angle.

Example The graph of y = sin(t — 7) is shown in Figure 2.2.7.
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Figure 2.2.7 Graph of y = sin(t — 7)

Summarizing the previous comments, the function y = asin(b(t — ¢)) has amplitude

a|, period 2%, and phase angle c.
(]
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Figure 2.2.8 Graph of y = —3sin(2t — )

[EEN

Example Consider the function f(¢) = —3sin(2t — m). If we write f(¢) in the form

£(t) = —3sin (2 (t - g)) ,

then we see that f has amplitude 3, period 7, and phase angle 7. The graph of f is shown
in Figure 2.2.8.

Similar remarks hold for the graph of the function y = a cos(b(t—c)), the only difference
being that, since cos(—t) = cos(t) for all ¢ (see Problem 10), we have

cos(bt) = cos(|b|t)
even when b < 0.

Related functions
The other four trigonometric functions are defined in terms of the sine and cosine functions.
The tangent function is defined by

sin(t)
cos(t)’

tan(t) = (2.2.10)

Note that tan(t) is the slope of the line from (0,0) to (cos(t),sin(t)). The graph of y =
tan(t) has vertical asymptotes at every value of ¢ for which cos(t) = 0, as can be seen in
Figure 2.2.9.

The cotangent function is the reciprocal of the tangent function; namely,

1 cos(t)
tan(t)  sin(t)’

cot(t) = (2.2.11)
Finally, the secant and cosecant functions are the reciprocals of the cosine and sine func-

tions, respectively. Hence
1

sec(t) = cos(t)

(2.2.12)



8 Trigonometric Functions Section 2.2

10
75t

5
25 ¢

-25¢
-5
-75 ¢

-10 ¢

Figure 2.2.9 Graph of y = tan(t)

and
1

csc(t) = (e’

(2.2.13)

As with the tangent function, the graph of y = sec(t) has vertical asymptotes at all points
t where cos(t) = 0, as seen in Figure 2.2.10.

Clearly both the secant and cosecant functions have period 27w. However, the tangent
and cotangent functions both have period w. We will leave that fact, along with the graphs
of the cotangent and cosecant functions, to the problems at the end of this section.

10 .
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Figure 2.2.10 Graph of y = sec(t)

Periodic motion

As mentioned earlier, many natural phenomena change in a periodic fashion. For example,
suppose we have a pendulum and for a given time ¢ we let x(¢) represent the angle between
the current position of the pendulum and its rest position, taking x to be positive if the
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Figure 2.2.11 A pendulum

pendulum is to the right of its rest position and negative otherwise (see Figure 2.2.11). If
initially the pendulum is held at a small angle « > 0 and then released, that is, (0) = «,
then, if we ignore friction, it can be shown that

z(t) = acos (\/%t) (2.2.14)

where g is the acceleration due to gravity (32 feet per second per second or 9 .8 meters per
second per second) and b is the length of the pendulum. Actually, this is an approximation
which holds very well for small values of . Note that the period of x, namely,

2 b
T o -,
g g

b

does not depend upon the amplitude «. This is an important fact, supposedly first noticed
by Galileo, which is crucial in the operation of pendulum clocks. We will consider this
problem more closely in Chapter 8, where we will derive (2.2.14) and see exactly how the
approximation enters the picture.

Periodic motions need not always be as simple as the motion of a pendulum. Consider,
for example, the motion of a molecule of air as a sound wave passes. The action of the
sound wave causes a particular molecule of air to oscillate back and forth about some
equilibrium position. If we let x(¢) represent the position of the air molecule at time ¢,
with x = 0 corresponding to the equilibrium position and x considered to be positive in one
direction from the equilibrium position and negative in the other, then for many sounds
x will be a periodic function of t. In general, this will be true for musical sounds, but
not true for sounds we would normally classify as noise. Moreover, even if x is a periodic
function, it need not be simply a sine or cosine function. The graph of z for a musical
sound, although periodic, may be very complicated. However, many simple sounds, such
as the sound of a tuning fork, are represented by sine curves. For example, if x is the
displacement of an air molecule for a tuning fork which vibrates at 440 cycles per second
with a maximum displacement from equilibrium of 0.002 centimeters, then

x(t) = 0.002 sin(8807t).
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Figure 2.2.12 Graph of the air displacement due to the organ note Cs

Notice that this function has period Ségw = ﬁ, and hence has a frequency of 440 cycles

per second.

In the early part of the 19th century, Joseph Fourier (1768-1830) showed that the story
does not end here. Fourier demonstrated that any “nice” periodic curve (for example, one
which is connected) can be approximated as closely as desired by a sum of sine and cosine
functions. In particular, this means that for any musical sound the function x may be
approximated well by a sum of sine and cosine functions. For example, in his book The
Science of Musical Sounds (Macmillan, New York, 1926), Dayton Miller shows that, with
an appropriate choice of units,

x(t) = 22.4sin(t) + 94.1 cos(t) + 49.8 sin(2t) — 43.6 cos(2t) + 33.7 sin(3t)
— 14.2 cos(3t) + 19.0sin(4t) — 1.9 cos(4t) + 8.9sin(5t) — 5.22 cos(5t)
— 8.18sin(6t) — 1.77 cos(6t) + 6.40sin(7t) — 0.54 cos(7t) + 3.11 sin(8¢)
— 8.34 cos(8t) — 1.28sin(9t) — 4.10 cos(9t) — 0.71 sin(10¢) — 2.17 cos(10¢)

gives a very good approximation to the displacement curve of a sound wave generated by
the tone Cs of an organ pipe. From the graph of x, shown in Figure 2.2.12, we can see its
complexity as well as its periodicity. Notice that the terms in this expression for x(t) are
written in pairs with frequencies which are always integer multiples of the frequency of the
first pair. This is a general fact which is part of Fourier’s theory; if we added more terms to
obtain more accuracy, the next terms would be of the form asin(11¢) + bcos(11¢) for some
constants a and b. Notice also that the amplitudes of the sine and cosine curves tend to
decrease as the frequencies are increasing. As a consequence, the higher frequencies have
less impact on the total curve. Put another way, Fourier’s theorem says that every musical
sound is the sum of simple tones which could be generated by tuning forks. Hence in theory,
although certainly not in practice, the instruments of any orchestra could all be replaced
by tuning forks. On a more practical level, Fourier’s analysis of periodic functions has
been fundamental for the development of such modern conveniences as radios, televisions,
stereos, and compact disc players. Unfortunately, this is a story which will have to be told
elsewhere.
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Problems

1.

Find the exact values of sin(t), cos(t), tan(t), and sec(t) for the following values of ¢.

() v T
© 7 @ -7
(@)~ ) 2F
() T () "

Sketch the graph of each of the following functions over an interval that contains at
least one period of the function both to the right and to the left of the vertical axis.
Also, identify the amplitude, period, and phase angle of each curve.

(a) y = sin(3t) (b) y = 3cos(2t)

(¢) y=cos(t—m) (d) x =sin(2t) +1

(e) x = 4sin(mt) (f) y = —2cos(2t — )
(g) « =5sin(2t + ) (h) y = —3sin(27t)
Starting with the identity sin®(x) + cos?(z) = 1, explain why

1 + tan®(z) = sec?(x).

The addition formulas for sine and cosine are

sin(x + y) = sin(z) cos(y) + cos(z) sin(y)
and

cos(z + y) = cos(x) cos(y) — sin(x) sin(y).
Use these to derive the double-angle formulas:
(a) sin(2z) = 2sin(z) cos(x) (b) cos(2z) = cos?(z) — sin?(z)
Use the double-angle formulas of Problem 4 to derive the half-angle formulas:
14 cos(2z2) 1 — cos(2x)

2 2
Use the addition formulas of Problem 4 to derive the shift formulas:

(a) sin (m — g) = —cos(x) (b) cos (ac - g) = sin(z)
(c) sin (a: + g) = cos(z) (d) cos (x + g) = —sin(x)

(a) cos?(x) (b) sin®(z) =

Can you picture the identities of Problem 6 in terms of the definitions of sine and cosine
using the unit circle? What do these identities say about the relationship between the
graphs of sine and cosine?



12

10.

11.

12.
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Using the addition formulas of Problem 4, show that the tangent and cotangent func-
tions have period w. That is, show that

tan(t + m) = tan(t)

and
cot(t + m) = cot(t)

for all values of t.

Graph cach of the following functions.

(a) y = tan(2t) (b) y = cot(t)

(© y=tan ) (@) y = eselt)

(e) = =sec(2t) (f) y = tan(4t) + 3

Using the definitions of sine and cosine, convince yourself that
sin(—z) = — sin(z)
and
cos(—z) = cos(x)
for all values of . Now sketch the graphs of y = sin(—3x) and y = cos(m — z).

According to Dayton Miller in The Science of Musical Sounds, the function
x(t) = 151 sin(t) — 67 cos(t) + 24 sin(2t) + 55 cos(2t) + 27 sin(3t) + 5 cos(3t)

gives a good approximation to the shape of the displacement curve for the tone By
played on the E string of a violin.

(a) Graph each of the individual terms of = on the interval [—15,15]. Use a common
scale for the vertical axis.

(b) Graph z on [—15,15].

(¢) Graph z and its individual terms (a total of 7 graphs) together on the interval
[—15, 15].

Suppose we define a function f by saying that it is periodic with period 1 and that
flz)=1—-2zfor 0 <z <1

(a) Sketch the graph of f over the interval [—3, 3].
(b) Let

1 1 1 1
gn(z) =2 <; sin(2wz) + o sin(4rz) + 3 sin(6rz) + - - - + — sin(2n7m))



Section 2.2 Trigonometric Functions 13

forn=1,2,3,.... For example,

2
g1(z) = —sin(27x),
T

2 1
g2(z) = - sin(27x) + - sin(4rx),

and

2 1 2
g3(z) = —sin(2nz) + — sin(4nz) + — sin(67z).
T 7T 3T

What is the period of g,,7 Graph ¢1, g2, g3, 94, g5, and g1 over the interval [—3, 3].
(¢) What do you think happens to g, as n gets large?

13. Graph f(x) = [sin(x)]| on the interval [—m, 7.

14. For an interesting account of sound waves, Fourier’s theorem, and related ideas in
electromagnetism, read Chapters 19 (“The Sine of G Major”) and 20 (“Mastery of the
Ether Waves”) in Morris Kline’s Mathematics in Western Culture (Oxford University
Press, 1953).



